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Abstract

Fully vcctorizcd versions of the Los Alwnos Na[ionul l.ilbormo~ bctwtmulrk ~xxlc
Gurmeb, a Monte Carlo photon transport algorithm. were developed for [k Cybcr
205/ETA- 10 und Cmy X- MPN-MP architectures. Single-processor pcrform:mce II K;IS -

urcmcnts of the vector and scalar implementations were modeled in o moditicd Amd:Ihl‘S
Law that accounts for additional dw motion in the vector code. The pcrformuncc ml
implementation strstegy of ihc vector codes nre related to urchilcctural t’c~iturcsof c: C*II

mnchine. Speedups between tiftecn and eighteen for Cybcr 205/ETA- 10 :Iruhitcc[urcs,
:md about nine for CIUY X-MPfl-MP architectures twe observed, ‘Ile best single pro-

cwsor execution time for the problem was ().33 scconcis on [hc lTA - 1(K;, illi(l (),.12
.wconds on [he CRAY Y-MP,

Kcywmck vcctorizution, parallel tilgorilhm, Imarwhing, sp;irsc tqlcr:ltitm, gillhcr,

wmcr, Mome CWIO,
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1. INTRODUCTION

1.1 General

Monte Carlo methods, induced by Ulam and Von Neumann [1], have reccivcd
intermittent but continuing attention from the research community [2-91. Present super-
computers are sufficiently powerful to simulate “real” problems in some instances. but
many problems are still CPU bound. The advent of gather/scaIter hardware. uv:liluble in
supercomputers since 1981, has made the efficient vectorization Gf such problems possi-
ble. The random and a priori unknown branching implici~ in such algorithms generally
necessitates a full recasting of the aigorithm before it can be vectonzed, ofren il~ impos-
ing task. Perhaps this is why this topic has been addressed only recently by the research
community.

Brown [10] first developed a strategy to vectorize neutron transport, where the vcc-
torization was over the panicles in a single cell. He reponed theoretical (not observed)
speedups of up to 40 for an event-based algorithm on o Cyber 205 over iltl Amd:lhl
470V/8. Ylanin et al. [11] reported, for a vec~orized zomd ~ppronch of wxing phomns ill
~xisymmerric enclosures, speedups of order 5 over optimized scalar code on (lay- I nnd
single processor Cmy X-MP machines, and about twice that obsenwd on o CDC 76(N). ~\

parallel processor photon tracing code (coarse-gmined pwdlclism) has been impiu-
mcnted by Sequent Computer Systems [12], and ;s reported 10 have whicvwi ntx:rly
linear speedup when applied to 12 processors. Bobrowicz et al. developed vccmrizcd
codes for both photon [13] and neutron [ 14] transpon bxxd on the physics in Ihc MCSP
[IS] production code. They accumulate particles in queues until some op~imul number is
reached. In this way, arithrnmic operations are delayed until they can be done w efticicnt
vector lengths, yielding speedups of approximately eight. Simmons and W~sse~ii[l
have also developed a multitasking version of MCNP for the CRAY-2 ml CRAY X-
MP[ 16]. Pryor and Bums [17,181 have achieved speedups of 13 10 30 for Iwo-
dimensicmal photon tmcing problems on the Cyber 205. Nlaltby [ 191 rcpmwd speedups
of 11 to 16 for a three-dimensional photon tracing algorithm, tilso on the Cybcr 205, In
(hose studies, vector lengths were kept long by emitting ncw photons whcncvcr old OIICS
were either absorbed or transmitted.

1,2 Scopeof Present Effort

The task wc have undemken is to vectorize the LOS AI;IMOS Nilti~t~:lll.iihoril~()~
benchmark Gunwb, which is virtuuily unvectorized [20] in originul form. ‘IIIc (;wnwh
algorithm simulates the axiai emission of photons from a source w.ljnccnl m the LICCut’:1
long, namw cylinder, ir~ the direction of the face at the other end. Phcmns :Irc tr:wcd
until they escape through tic cylinder wall, are transmitted through the opposing !’ww. or
iue backscattered through the adjacent face. Although IIIC gcc)mctry is simple. the physi -
cal intemctions are quite challenging to sim~l!iitc, including Ihc ycncr:~~i~wIJf IWWpht]-
tons through collision processes und vilrittn~~reduction Iccnniqucs,

This paper describes implemcnmtions of !hc vccmrizcd (J’wmdj (N1 tlic li’1’A I() (;
i~ttdCRAY Y-MP supercomputcrs. The new implemcnt:uion W:IS initiidly designed fur
~heCYBER-205 at Colomdo State University, making subsumtial usc d’ tht (’DC vc(~tor
primitives, This code was then translated into a version th:u could run (m Ihe (’RAY S-
MP, following which, n ncw version, more suitnblc for Ihc (WAY, i~ils (Icvul(yctt.
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These machines have diverse architectural feamres that render the implcmenmrion of ;t
vectorize.d htonte Carlo algorithm of interest to the reseiuch communily. For concise-
ness, we will refer to an ETA implementation, which encompasses the ETA-10 ;md the
Cyber 205, and a Cmy implementation, which refers to [he CRAY X-NIP and Y-}lP.
although wc also present results for a dynamic memory CRAY-2 (SN 2007).

It is useful to examine the present effort in the context of previous work, Previous
applications to photon tracing between surfaces where pticles do not interact I I7-19 ]
were algorithmically simple, but involved vety complicated geometries. Subsmntiul

effort went into construction of a very efficient, vectonzed surface intersection loop. i!
more complicated application to Molecumr Aerodynamics [21-22] incorporated pmiclc-
particlc interactions, and had the further difficulty of requiring [cmporal sywhroniz:trion
among grid cells. Yet the geometry was the simplest possible -- one dimensional. V:iri-
ous facets of that problem resulted in short vector lengths, and consequently, poor pcrtor-
mance on the Cyber 205.

The present work represents it mix of features from these previous ;lppliu[icms.
The geometry is simple, and the physical particle interactions are nmdemlely complex.
Panicles intemct in a limited sense through selective prcxiuction of ptiirs during ccr[;lin
collisions. No synchronization is required, and vector lengths should, on avertige, remuin
long (but will decay to zetm as the simulation temmmtes). However, the present :ilgo-
rithm incorporates variance reduction techniques. including ~plitting and Russi:lc

Roulette (to be discussed in Section 2), which complicmc the data motion. These fc:lturcs
make the present effort an ideal logical extension to the previous work.

Our approach is conceptually very similar to that of Bobrowicz et ill. [ 13], where
particles were accumulated in multiple queues (a total of fourteen were required) unli]
vector lengths become long enough for efficiert computation. Our method differs in dull
we form only two queues. In this fashion, we defer the intermediate overhead of “hand-

ing off” particles to queues until all logical operations huve occurred for [hc opcrnlion,
Also, we incorporate the complexity inherent in the variance rcduc~ion strategies IIILIn -

tioned above. Finally, wc explore in greittelsdetail the performance of the ill~oti[hm over
a wide range of vector lengths, and investigate mndom data motion, iIs it ilppli~s to
Monte Carlo methods, on vector architectures.

The goal of this work is to compare the w’chitccturul imd software fcwurcs ut’ the
ETA and CRAY systems that play important roles in these types of problems. Wc will
do so in terms of a theoretical framework that is general to tiny vector processor, WC ‘.viil
itlso discuss some of the tradeoffs we encountered in implermmting the CLXICSili}(l
describe the vector algorithms in dernil.

2. PHYSICAL MODEL

Guwch is an implementation of iI Monte C:wlo photon [rilnspmt iilguri[htt], I‘hi)
tons arc traced from birth to death, through intermediate collisi(ms Ivith ttw nlwlitllll, J\s
collisions occur, photon energies and numbers m:ly w-y. IN M(M)IC(’iirlo p:lt~i~.lc[ril~til~g
tilgotithms, these situations are hundlcd us followu. Ikh lt)gi~i~l p:wticlc tt-ww l’~msisrs~)t’
u number of monocncrgetic photons that ure dcult wid~ alg(~ritllflli~$:~lly~Isil sillglc ulllt,
This unit is loosely referred to us a panicle, with two properties ~tll:lri~~.[clmis[it’t~!”IIw
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energy content - the energy of the photons (referred to as the energy value), und the sta-
tistical importance of photons (refcmed to as the panicle weight). As photons are
absorbed, the panicle weight decreases. As the particle interacts with the medium, the
energy value decreases. The product of these two quantities determines the total energy
content of the particle. To distinguish physical from algorithmic quantities, we will refer
to algorithmic quantities as particles and physical quantities us photons. We now
proceed with a discussion of the physical model.

Gumfeb calculates the transport of grmima rays in a carbon cylinder of radius 1 and
length 30. The geometry is pictured in Figure 1, showing the cylinder wall (surface 2),
the left end (surface 1), the right end (surface 4), and the internal partition (surface 3).
The source is at Surface 1, with photons being emitted to the right along the major axis of
the cylinder. Surface 4 is the target, Photons [hat exit through surfaces 1, 2 and 4 w-c
rcfemcd to as ‘ ‘backscattered,” ‘‘ escaped” and “transmitted,” respectively. \Ve want to
determine the combined weights of particles that exit each surface, as a function of
energy level (35 energy levels are used), In this paper, for simplicity, we report only [Ix
total number of piuticles (summed over idl 35 energy levels) [hut pass lhrough [hese sur-
faces.

Y=o Y=20 y=so

Surface 4
“Triinsmi!ted”

Surfilcc 1 Surface 2 Surface 3
“Backscattcred” “Escaped” Internal Pd.rtition

Figure 1
The physical system,

Surface 3 differs from the other surfaces in that it is only a Iogic:d surt”acc, ix,, iI
partitions the geometry into an “uninteresting” portion (the Icft portion), d ill]
“interesting” portion (the tight potion), This artificial constmct is used 10 improve lhc

statistical properties of the:: particles transmitted (i.e., improve the wxurwy d’ [hc
answer), and simultaneously reduce the amount of (less useful) work to bc ilo[l~.
Because the geometry is long and thin, few of the original pwticlcs will strike the mrgct -
resulting in poor statistical convergence. The convergence of the simulation vilrics us
l/sqrt(N), while the time is proportional to N, where N is [IKS~oiiIl Ilulllbcr t)( pilr[i~l~s
tracked. An optimum balance between accuracy and runtitne IS done with biasing, [Iw
assignment of more imporumce to purticlcs near the turgct. In Gumwb [his is dotw t~y
“splitting” those pnrticlcs that cross the internal partition from left 10 right. IJporl splil -
ting, particle weights arc halved, and then each particle is ‘ ‘~’loncd. ” ( Nmc Illiit [his
prcsmcs the total number of photons, und ensures conscrwuion 01’ cmwgy, ) This
rcquims that daughter panicles be traced along with the parent p;lrticlcs. I [cifc[z Iiiis
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given a particularly lucid explanation of such variance reduction techniques [23].

Similarly, the strategy of Russian Roulette reduces the umoum of work tracing
“uninteresting” particles (i.e., those moving away from the target). Particles which

cross the internal ptition ftmm tight to left undergo Russian Roulette, where a ranclorn
half (fire a uniform disrnbution) “die,” and the remainder each have their weigh[s dou-
bled. We rely on the fact that the random sample of that half of particles which ‘‘d!e,”
will, on average, have a total energy product equal to that of the sumivms. Large

numbers of panicles are required for this assumption to be valid.

The physical model employed is relatively realistic for phctons, although the
geomeuy is very simple (few surfaces and only a single mmerid). Photons may in[erac[
with the medium in a variety of ways. A particle may undergo: ( 1) energy exchange
scattering with the medium into a direction dependent upon particle energy, (2) “pair

production,” where a pair of lower energy particles me produced that travel in randofil
directions, or (3) absorption by the medium. All of these interactions we dependent cm
energy by virtue of energy dependent cross sec[ions for scattering, pair production, und
photoionizauon.

The algorithm is thus illustrative of complex physical phenomena and not of com-
plex geometrical aspects. This particular example was chosen as a representative test
case for vectorization of the physical aspects, itnd as such is a reasonable first s[cp in m
effott to assesswhether such methods should be further investigated through inclusion of
arbitrag geometries and numbers of materials.

2.2 Approaches to Veetorizing Monte Carlo

The Monte Carlo particle transport model described above can be viewed iIs u
binary decision tree (see Figure 2). A descriptive picture of a transport execution is to
view a particle as being insem.ci into the top of this tree. As the citlcu!ution progresses,
the particle drops toward the bottom bouncing randomly either left or right (depending
on the physical process cross sections, the chosen random numbers, and the charuc[cris-
tics of the particle itself) much like a ball in iI pinball mitchine. Some of the branches
may consume the particle, others may unleash more particles. Almost :111brunches
change some particle characteristic. In any case, the panicle and tiny dmtghtcrs cilhcr m
consumed or drop to the bottom of the tree where tt’ :y are then reinwmed tit the mp with
new characteristics.

If one puticle at a time travenes the tree, the execution is scalar. If a continuous

stream of particles is “dumpd” into the top so that the particles make their wiIy [ow:lrd
the bottom independently, the computation proceeds as asynchronous pamllcl proccsscs,
Finally, the more organized model of synchronous vector computation consists ot’ ti b:iwh
of particles dumped into the top that can undergo separ~tion imo Smidlw bil[~h~s:11~il~h
branch, The way in which this separation is camied our, w well its when the scpm;ltmns
are carried out, are two impcmantdifferences between the ETA and CRA Y implctmn[:l-
tions of vector Gumteb,

We illust.mte the operation of the vector code with a pictorial cxitrnplc [rilcirlg500”
particles. We have instrumented the code tc obtain particle positions uftcr cnch event,
We frame our discussion around an example of relatively few particles, [:ivc hundred
particles are used in this test case, 250 of which are kmnchcd for the first event. This is
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lNTERACTION
WITHMEDIUM?

NO

TRANSPORT CROSS INTERNAL.
PARTICLE PARTrlTON?

I YEs
PHOTOELECI’RIC: FORWARD

WEIGHTCUTOff CRoss TALLY

YEs

NO WEIGHTCUTOFF: TRANSPORT

J
COKON \

SPLIT
RUSSIANROULETrE

SCA’ITER \
% DIE?

I
KLEIN- PAIR

NISHINA PRODUCTION

ENERGY
CUTOFF

YES ,“ v

#‘

‘RGE E
Figure 2

Bhmy Decision Tree

done to illustrate the operation of the algorithm for large numbers of particles since [he
remaining particles will b launched as storage space allows in subsequent event steps.
We depict in Figure 3 particles at the end of each event step by particle position. Particle
positions, even though calculated in three-dimensional Cartesian coordinates ( X,Y,Z ),
arc displayed in two coordinates: radius - R, and position along the cylinder axis - Y (for
illustrative purposes, we nrglect the nngul~- position), The dotted Ii nes in the Iigures
represent the intcmal partition, and Lheaxis of the cylir,der.

To begin the simulation, 250 particles are emitted from the source. of these, HI
anivc at the internal partition and undergo splitting. Of the remuining 169, 149 undergo
Compton scattering in the left cylinder, and the 20 remaining produce low-energy pairs.



‘.
,,

-7-

(a) End of Event 1.

(c) End of Event 3.

(b) End of Event 2.

(d) End of Event 4.

(e) End of Event 5. (~ End of Event 6,
Figtr ● 3

Photons Positions at Ends of Events 1-6,
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Two hundred fifty new particles are emitted at the beginning of Event 2; a total of
581 particles are then traced dting this event. Of these: 227 srnke an ex~erior surface
and are tallied, 94 cross the internal partition to the right and are cloned, 241 undergo
Compton scattering in the left cylinder. and 19 produce pairs.

In our exrmple the third event proceeds much like the second, leaving 138 particles
active to start the fourth event. During the fou.nh even~ 1 particle crosses the internal
partition to the right and splits,while 2 ems to the right and undergo Russian Roulette --
one dies, while the other lives. l%e fifth event produces one additional particle that
undergoes Russian Roulette and dies.

After taking into account the particles that cross an external surface of the cylinder
and the one that dies through Russian Roulette, only 7 particles remain active for event
six. The surfaces of intersection and the travel distances are determined for these 7 parti-
cles. Six escape through the cylinder wall, and one is transmitted through surface 4. At
this point, all original 500 particles and all of their children have been traced and under-
gone disposition. Final tallies are computed for the escaped, transmiued ;md b:wk-
scattered particles; tiese are then divided by the number of emissions :md the sirnula[ion
is complete.

We now tum our attention to the m.ndom branching evident in the above example.
“l%erandom branching occurring at each node of the decision tree may be dealt with in

three ways. The first method physically divides the panicle batch by ccpying all particle
characteristics into separate contiguous storage regions. The advantage here is that sub-
sets are easily tracked through the we by their base addresses and lengths. The overhead
associated with this involves the generationof two vectom of indices, two gathers, and a
subsequent vector merge at the end of each event step. However, this overhead is imlor-
tized over the number of computations at each node, and the computations are performed
at successivelyreducedloop lengths as the particle batch travels down the tree.

Alternatively, particles may be logically partitioned using two other strategies in
which no actual movement of particle data occurs. The first of these uses a logical vector
to track the particles on which computation is to be done. The use of logical vectors
requires the composition of mu!tiple vectors at each lower branch point. The length of

any loop that comes after a branch is still the number of particles in the original hutch.
The other strategy usestwo index vectors whose values are the particle indices belonging
to each subset. We call this the “indirect method. ” The use of the indirect method results
in loop lengths that are exactly equal to the number of panicles in each subset. However,
the memory access patterns are of the gather/scatter type and may not be suitable to some
architectures.

In general, the higher the level in the decision tree, the greater advantage there is to
physical partitioning. Specific advantages/disadvantages of each strategy must also be
considered in the context of machine characteristics. The truth ratio of each branch hi not
important when two physical subsets are to be formed, but becomes quite importw L
when subsequent computation is to be carried out on only one branch. This one-branch
caseis found in Monte Carlo situations where a‘’ sieve” type technique must be used. III
Section 5 we present some performance data that comment on the tradeoffs between nil
three methods.
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3. A MODIFICATION OF AMDAHL’S LAW

We now develop an extended version of Amdahl’s law [24] to illustrate the speedup
to be gained by mapping a scaiar problem onto vector hardware where the resulting algo-
rithm has a large component of data motion. By data motion we mean either of the fol-
lowing: (1) Operations that rearrange elements in memory to improve performance of
vector memory operations, i.e., physical partitioning. This can be either movement of

elements from random locations into contiguous memory locations or scatter of resultant
elements back into non-contiguous locations. (2) Excess memory fetches and computa -
tions that are ignored (not stored)so that the remainder of the computations may be done
in the vector hardware (i.e., logical partitioning).

The modification of Amdahl’s Law proceeds as follows. Let S be the scalar execu-
non rate, V the vector execution rate, p the fkaction of time spent in the vector hardware,
F the tatio of time spent in the vemor hardware due to memory latency to that time spent
performing useful computations (i.e.. vector start-up), and D be the ratio of time spent in
the vector hardware doing data motion to that time spent doing useful computations.
Then the s]w-edup,R, of the vector c(xk over the optimized scalar code is given by

R=
1

(1)

(1-p) +p(; )[l+F+D]

Figures 4(a) and 4(b) show plots of R versus p, with D varying parametrically. We
have isolatedpcmions of Gunueb and independently measured values of V/.$ in excess of
11 on the Cray Y-MP, and values of 17.18 and 24.05 on the Cyber 205. Thus, we select
values of V/S of 12 and 20, representing, approximate] y, Cray and Cyber 205 hardware.

(WC demonstrate in section 5 that S for the ETA1O scales to about 30% less than ~he
ratio of clock speeds, but that V scales appmximmely qual to the ratio of clock speeds -
thus a value of V/S = 25 is appropfite for ETA1O architectures.) Note [hat the results
are valid when D > F, or if D is viewed as the aggregate of D and F.

Note that Equation 1 defines a ratio between scalar and vector performance. The
ratio may be large either as a result of high vector rates, V, or because of low scalar rates,
S. In this case, the ETA architectures have both lower scalar rates as well as higher
asymptotic vector rates than das the the CRAY X-NIP, and therefore, larger values ot’
V/S. Finally, note that for large values of V/S, p must be large to achieve substantial

benefit, especially with the added ~nalty of D. Thus. for machines having smaller relit-
tive values of VLS, cocks do not have to be as highly vectonzed to achieve neitr-peak
performance. Of course, absolute pcrfonnance, i.e., the timings of the vec~orized imple-
mentations, am the Mtom line.

4. ARCH~E~URAL and COMPILER CONSIDERATIONS

4.1 General

ETA architectures are bit addressable [75], with memoty-to-memory vector execu-
tion, and 256 scalar registers. The ETA- 10 can recess memory contiguously, wi[h con-
stant strides, or with scatter/gather. However, each memo~ access fetches il superwmd
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Speedup vs. I&cent Vectorization From Modified Amdahl’s Law.

(eight 64-bit words), and so pcrfotmancc for non-contiguous fetches can degrade by up
to a factor of eight [26,27]. Their scalar pcrformnce is weak, simply because of their
relatively slow cycle times (except the liquid nitrogen cooled model G, which has ti cycle
time of about 7 nanoseconds). To offset this, more effort musl be spent in vectorizing the
code. To achieve good performance, we have explicitly vectorized the ZTA algorithm
using the Q8 Fortran extensions[28]. Implemented m in-line instructions, these allow
the programmer to access L5Cvector hardware with very low overhead -- m importm
feature in Monte Carlo simulation. We alSOmake extensive use of bit vectors, for econ-
omy of storage, and to allow Iogi ml operations to proceed at iIpproximatel y 8 times ~he
rate per result * for full-wotd operations.
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An inescapable penalty is lack of portability. Also, vector lengths cannot exceed
65,535 due COcompiler limitations (longer vectors must be explicitly strip-mined). This
is not an issue here, as wc have designed the algorithm such that all vec[or lengths are
bounded by this maximum. We also structure the data so [hat it fits entirely within local
memorv; thus no paging of the virtual system occurs.

The CIMY X-MPfl-MP [29] is a shwed-memory, word addressable architecture
with local scalar, address and vector registers. Performance on shon vectors is good, iis
is scatar performance. Memory access supponed by Cmy hardware includes contiguous,
constant srnde and scarer/gather. Cray performance for long constant-stride vectors is
the same as for contiguous vectors[20], provided that bank-conflicts (power of 2 strides)
are avoided. For a large class of (traditional) problems, goo 1performance can uswdly be
obtained in a fashion almost transparent to the user. Cray FORTRAN implementations
lack an explicit bit data type, and deny the programmer access to vector masks (even
though they are used internally). However, this disadvantage is offset beciluse

scatter/gather operations are efficient on the X/Y-MP architectures [20.261.

Finally, we note that all Fonm.n compilers exhibit deficiencies in some key .Ircils.
Some can be easily circumvented, but others require cornplele redesign of idgorilhnls.
Currently, no compiler is sophisticated enough to vectorize “vanilla” SCalilrMcmIe Urlo

code, and thereis little expectation that such a feat will be accomplished soon.

4.2 Performance on Random Data Motioti

A factor of great importance in Monte Carlo simulation is the ability of Ihe
hardware to perform data motion operations efficiently. This situation has nor been fully
explored for random data motion. In this section we attempt to clarify some of the issues
chat arise in vectorizing Monte Carlo algorithms. We look at the component operations
involved in the data motion aspect of the problem, with a ~’iew [oward quim[ifying [he
tradeoffs that will likely be encountered in general situiuions. Thus we comidcr lhc
atomic operations of index list generation, logical vector generwion. illid the ;l~~tli{l
movemem of data by gathering, As we attempt to show, the choice of method is depen-
dent on input vector length, truth density, number of operations to be done cm [hc pilr[i-
tioned set, and the number of associate-d vectors required for funhcr ~onlplltil[ion. The
issues are complex, but an understanding of these basic timings can Icild to intelligcnl, i I_
not always optimal, use of these machines,

To perform vectorizcd gather/scatter operations, iI vector of indices is required. The

generation of such a vector is not currently vectorized by Cray’s CF177 compiler (or for
that matter, by ETA’s compiler, but a variety of vector ETA Forrriin exlcnsiom cx ist for
such purposes). The standard FOIUM is as follows (where RANDOM(1) is J vccwr o!’
uniformly distributed random numbers):

K=()
DO 100 I = 1, !.ENGTH

IF (RANDOM(I) ,LT, DENSI’I”Y) Tl Il;fd
K=K+I

INDEX(K) = I
ENDIF
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lCK) CONTINUE

Note that this loop generates only the “true” index list of the physical partition -- un
additional operation is required to obtain the “false” index list. Cray’s library of
scientific subroutines, SCILIB [30], does provide a set of subroutines (e.g., WHENFLT,
WHENFGE) that generate the vector of indices in the vector hardware. However, sub-
routine overhead is incurred for each call. This could be a potential drawback in general,
although in GAM’TEB wc have found theoverhead to be small (= 0.5%).

If one adopts the logical partitioning approach, after generating [he logical vectors
(i.e., an integer is set to 1 wheri the condition is “true” and O when “false”), the SCILIB

routines WHENEQ and WHENNE may be used to generate indices. Using this
approach, one can with logical vectors do a series of operations encompassing one or
several levels in the binary decision tree, then use the WHENEQ or WHEN NE rout ines
to generate lists of indices for a subsequent vector merge. As we show below, [his avoids
the substantial overhead of generating indices, and has been found to be the most effec-
tive strategy for both architectures.

In the data below, wc plot execution rates in millions of operiitions per second
(MOPS) versus orighml vector length, with density v,mying parametrically. The density
is specified in the loop nbove, with uniformly distributed random numbers in lhc interwl
(0.1), Where the random number is less :?an the densi~y, those elemems me giuhered.
Thus, elements in random locations are gathered.

4.2.1 CRAY Y-MP

Figure 5 presents CRAY Y-MP execution rates for generating the vector of indices,
1.NDEX, versus input vector length, LENGTH. These are results from Cray’s SC’IL113
routines WH.ENEQ, generated;T the vector hardware. Execu[ion rate in Figure 5 is [hc
ratio of the number of generated indices to the time. The density varies from O.1 to 0.9 in
increments of 0.2 (n,b., iherandomness occurs in location, not frequency of ~occmcncc),
Also included am results flom the (sctiar) FORTRAN code above for a density of 10()%

(execution rates for lesser densities scale as the density). Asymptotic vector exemion
rates am dependent upon density, ranging from 6 MOPS for a IO% density IO 10 MOI’S
for a 90% density. The code for WHENEQ consists of IXJIIIcomparing imd index incre-
menting, The time for comparison is constant over the entire range of wwh miios. while
the time for incrementing increases with increasing truth riuios. Thus, lower RIICS of
index production are obsetvcd at lowest density.

It is wotth mentioning thatoften wc require index lists for both bmnchcs of’ ttw LSOII.

ditional. As cuncntly implemented, SCILIB has no routine 10 wmmplish [his
efficiently, without making a call to, say, WHENEQ !ollowed by [I second ~wll m
WHENNE. In fact, one routine could easily produce two index lists, OIW for cuch
branch, where the time would be less than the total time for two culls.

Figure 6 presents CRAY Y-MP execution rates for vmor gwher opcriltiolls VCIXUS
vector length, These data arc independent of truth ratio bccimse no unncccss;lry clcmcnts

are gathered. l?w execution rates for these gathers are roughly an order of mqmitudc
gmntcr than those for index generation (Figure 5), showing ttuu cxplici[ gcnmtion 01
indices using SCILIB routinesis a significant bottleneck, To gain good Ovcrilll execution
rates, the time for the SCILIB routines nm.tstbe amofiizcd over muny il(~il[ing p~tin[
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operations.
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Figure 5

Cray Y-MP Execution Rates for Generation of Index Vectors.
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120 -
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Figure 6

Cray Y-MP Execution Rates for Random Gathers.

4.2.2 ETA1O

In this section, we present rcsuhs from runs performed on [he L’ybcr 205 ill
Colorado State University, We use these as reprcsentmivc of ETA whitcc[urcs, when
appropriately scaled, However, there arc slight differences in the iin.ghitcc[tlrcs Ih;It musI
first be accounted for. In the EI’A line, some scalar speed wiIs sticri!iccd m yield
d~a~ vector~t~up times, ‘Ilemfom, sh~~ vector Pdormiitlce SUICS fiis[cr Ihilll lhc
clock ,ate from the CYBER to lhc ETA, while performance on long vccmrs Ilils IMCII
observed to scale directly according tc clock rote, In any case, the dift’crcmw I)CIWLTII
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ETA and Cray architectures are substantial, making the differences between [he ETA and
Cybcr 205 architectures of lesser significance.

On ETA architectures, there are three ways to perform data motion, each with rela-
tive advamagcs within an operating scenario. First, wc examine the rues at whid, vector
‘‘conml” operations can be performed. These include, in Figure 7, the rwes m which bit
vectors can b getvwated and then usai to either: ( 1) directly perform a vec:or compress,
or (2) generate a vector of indices by performing a vector comp.rcss on an may of
integers in scquencc km 1 to 65,535, The compress preserves original order, :md as
such is a special case of a gather operation. The gather does so in this context os well,
Execution rates arc shown in Figures 8 and 9, for the: (1) com~ress, and (2) subsequen[
gather, tqeetively. Note that, in Figure 7, execution rate is based upori the number O(
logical bits consuucted (both true and false), while in Figures 8 and 9 rules nre btiscd on
the number of elements resulting from the compress or gzther, respc.. .ively,

100

80 -

60 -

MOPS
40 -

20 -

0 7
10 100 1000 1(Mx)()

INPUT VECI’OR LENG’H I

Figure 7

Cyber 205 Execution Rates for Constmction of Di[ Vccmrs,

These operations, ns implemented, re:ul~ in un explicit bit vector, which tI;m d)cti Iw
used (multiple times) in subsequent operations for futihcr pwti[ioningi Such is useful
when the algorithm conmins nested data motion -- typicul in Mon[c C~wlosimulnlitm,
For example, logical o~mtions on Iwo logical bii vccmm (c,g., t’or those photons whit’h

intersect surface 3, mtd for ,.1OSCwhich ure tmveling to the right) yickl iI dlird bit vccmr
which cnn ~hen be used for additional control (e.g., the Iogicnl AND of’ lhcsc two yichls :1
cmttrol bit vector for spl:,tting), These operationsure very fnst on Ihc IH”A hCLNIIISr, us

the titrcnm rnte from rncmoty remains the sutne, multiple rcsu’ttinls wc ~lctlcril[cd in C:ICII
pipeline per clock tick. Execution rmcs for Iogicul opcmtions on bit vccmrs iirc SINNVII ill
Figure 10, Usc of bh vectors also substantially rcduccs memory rcquircmwm,

The gcncrntion of bit vcutors proceeds indcpendcm of dcnsily, ml ilp~)ro:~c’h~s w

asymptotic rate of about I(M) MOPS. This is from two 10tcn Iimcs ilS I’nsl ilS Ihc gcncr:l-
tion of indices on the CRAY Y-MP. Ile asymptotic cxewion riitc (d’Ihc tl)M 1)1{1{SS
operation is nearly linear as a function of density, wwying from nbout 10 M()l}S ;U 1()%
density 10 9(’) MOPS for full opcmtions. GA’1*1IIIR uperiltions. ;Illcrnnlivvly, lliiv~
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Figure 8

Cybcr 205Execution Rates for Random Compresses.
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Figure 9

Cybcr205Execution Rates for Rundom Gmhcrs.

execution ratesnearly independent of density, with asymptotic execution rnws of iq)prox -
imately 35MOPS, Thus for densities greater than nbout 35%, it is more cconomic:~l m
pcrfonn n COMPRESS, especially when including the uddilicml ovcrhcm! of imicx gctl-
eration from the bit vector, Gmhers on the Cmy proceed tit highcr rwcs th:ln (m [he
Cybcr 20S, bul generation of indices pr ~eeds IIt higher rates ml E“I’A:wchim’[urcs,
When the Cybcr 205 rates arc scaled to the clock of the ETA 10-C (7 ns vs. 20 ns), the

asymptotic rate for gathemIs approximately equul [o tlmt of the CRAY Y-MI], Note th:~t
Cray pcrfommncc is good at low densities, and ETA pch”omlmwc is gmd ill high dcnsi -
tics.
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Figure 10

Cyber 205 Execution Rates for Bit Operations.

The single remaining strategy for da;a motion is [he “WHERE” operation, for
which calculations arc performed using the entire vector, and results we s~ored only
where the logical is set (*’TRUE”). This operation can be done using an existing con[rol

bit vector, or by specifying a logical vector (e.g., vector 1 .LT. vector 2), in which cuse it
displaces the generation of the bit vector and index list, lhe gather, and Ihe subsequem
scatter, “WHERE” operations incur a constant overhead of about 100 nanoseconds,
independent of vector length and density. As such, they arc very cfficiem for rri a~ively
full operations, and for locations near the bcmom of the decision tree where ~hcre is Iittlc

additional partitioning to be done.

We have chosen 1,0combine the stmtegics of us:.ng bit vectors id WIIERE uon-
stmcts in the ETA implementation. This avoids the rckuively slow g:uhers (here, wc
assumed a prim’ that the data motion would not be spume; however some operut ions
were). We use bit vectorsthat encompassseveral levels oft hc bin,ary decision wee. This

allows the intermediate logical operations tu proceed at bit veclor mtc w the expcnw 01’
vector computations of full (where “full” denotes the length ut the beginning o!’ the

several Icvcls of current interest) length. We believe this uppmtch lo be rlci]rly OPlil]liil,
however wc have not ceded the algorithm using idtemmive strategies and (Qiillonly SUNC
this without proof.
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S.RESULTSAND DISCUSSION
5.1Timhqp and Speedups

presentedin Figure 11 arc the CPU timings from just the solution phases of these
runs for 40,CKMemissions, as the vector length varies from 1,000 to 15,0W. All runs use
IUNF pseudmrandom squcnces. A slight effect of vector start-up time is seen M vector
lengths below 4,(MX). The ETA results at long vector lengths scale as the ratio of clock
speeds.

Lr——l=l
1 ‘2U3

CPU 1,2 “’”’”.._.. mm........cRA.Y?.. ........................
TIMES

(SECS) 0,8 —

0,4
t

CRAY Y-MP... . . . . .. . . . . . . .. . . .. . . . . . . . . . . . . .. . . .. . . . . . ,,, . . . . . . . . ,
IS1-A lLW.

(j~
o 3CK)0 m 9(XIO 12000 15000

VEC1’OR LENGTH

Figure 11

Solution Phase Timings of Vectorizcd Gumteb Algorithm.
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5 - ,,, ,.!
‘“’’”’’’’’ ’’’’’ ’’c’i” ’” ’’’’” ’’’” ’’’” ’’’’” ’”’z

o I I I 1
0 3(XX) m !XNX) 12000 I 5000

VECTOR LENGTI 1

Figure 12

Solution Phase Specdup vs. Vector Length

To calculate speedups, we divide the scalur solution phusc timings [ils~ti~p[[~[i~m
values arc given in ‘Ilble I ) by those timin~s in Figure I I to yield I:igurt 12, ‘1’iil)l~I
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lists exwucion times for the original scalar algorithm and the revised vector algorithms,
The execution times of the vector algorithm for the CRAY Y- M-P use the SCILIB rou-
tines for index generation. Table 1 also shows the asymptotic speedups, calcukued by
dividing the solution-phase execution time of the original scalar code by the best limes of
the vector algorithms. The asymptotic vector times in Table 1 for the ETA 10 and Cyber
205 machines are for a vector length of 40,000- the largest run that would fit wi[hin the
1.7 million words of available memorj on the Cyber 205.

Table 1. Execution Times and
Spee.dqs for the Gamteb Benchmark

Machine Clock Scalar Time Vector Time Speed up
(ns) (sees) (sees)

ETA1O-G 6.95 6.11 ().33 18.5
ETA1O-E 10.5 9.20
Cyber 205 20,0 13.40 0.90 14.9

CRAY Y-MW832 6.17 3.9 (-)42 9.20
CRAY-2 4,2 5.99 1-12 5.35

In the remainder of this discussion we concentmte entirely on the perfonmmce of
the ETA- 1(M3 and CRAY Y-MP. Despite the 11% difference in cycle times between
these two machines, the scalar code runs about 36% faster cm the Y-MP. However, cm
the vector version of the code, the ETA-100 is the faster machine by 2170. On bo[h
machines, the times are nearly invariant wi~h initial vector length, differing by less th;m
10% over the range of vector lengths from 1$X)0 to 15,000. Also, the execution ~imcs for
both scalar and vector algorithms are strictly linear with the number of source emissions,

Note from Table 1 that there is an approximtucly 3(!.5% pennhy in scnlur perfor-
mance of the ETA machines, when corrected for clock rim. Speedups iire ~l[llo~i Cm-
stant a[ nlnxtt 14 and 18 for Cyber 205 and ETA architectures, respectively, ilnd ilbt~tlt 9
and 5 for CRAY Y-MP and CRAY 2 hardwure, respectively. Duc to their poorer s~:dilr

performance, the speedups am greater on the ETA machines than on ihc Cybtr 205.
Taking V/S = 12 as representative of CRAY Y-MP hardware, tind V/S = 25 ils rcprcscn-
tative of ETA hardware (ETA hardware, with rehuively slower sculur pcrfortllilncc, h:ls :1

higher V/S ratio than for the Cyber 205), we have culculwed “best til” villlles in [hc
modified Amdahl’s Law ofp = 0,995 and D = 0.234.

We have measured the vectorization levels of Gdmteb on the ETA 10-(; iln(~ [Iw

CRAY Y-MP [3 I ~ using ~he hnrdwa.rc performance monitors. The perccni vm’mri~:l[inn

fmm tiis method on the Cray is equal to the number of vector operiithns divided by [hc
lotal number of operations. On the Y-MP/4 16, this vulue is 93.0%. I lowcvcr, Ihc per-
cent vectorization required by Amdahl’s Iuw is really btised Lm [imc, not ty)crillitm
counts. Additionally, the Cray cun overlap some scalar operations with some vccmr
operations, so the percent vcetorizntion measured by opcrution cmmtmg m::y nut hc
uccurate, We have also used another method [32], which is btiscd on n~ciuwring,in s~:lli~r
mode, the amount of time spent in vectorizable loops. When done in his ll~ilnllcr, dw
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perccm vectorization or the Y-MPis >99%. On the ETA1O-G, theidgorithm spends
86%of the tirm in the vector hardware. At a speedup ratio of 25, this yields a value of
p = 0.993.

Using these values of percent vectorization in Equation (1), we can calculate values
of D based on the speedups wc observed for Gumreb. The values of D range from 0.2 to
0.3 and are in good agreement with the values of D we obtained above. This suggests
that the vectorize.d versions of Gamteb have effectively mcmized the data motion over
large numbers of floating point operations.

These speedup results are in the range of those rcpmed in References 13 and 14,
and 17 through 19, for vectorized photon tracing routines in evacuated enclosures, II is

our belief, based upn speedup results fcr a vticty of sizes (numbers of surfaces)
presented in Reference 17, that this range of speedups would apply with some degmdw
tion to more complex simulations with greater numbers of surfaces.

6. CONCLUSIONS
Vcctorization of Monte Carlo on the ETA-10 k best accomplished using bit vec[ors

because their generation and manipulation is robust and effective. The disitdvtmtage c!(
this method is that the bit vec:ors must be repeatedly tested throughout the code and loop
lengths do not decrease in inner nested conditionals. On the Cray syslems, Monte C:wlo
vectorization is best carried out usin~ gather/scatter opemaons, because vector lengths do
deerease in inner Imps. “[lis is in spite of the overhead associmed with index generation,
which beGonws ameliorated by amcmizing the overhead over many floating point opera-
tions. The modified version of Amhdahl’s Law effectively shows how the data mmioll
needed to organize tie computation in a Monte Carlo algori~hm affec~s the overid I per
formance.
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APPENLIXA

A Note on the Pseudo-random Number Generator

In this appendix we describe a problem encountered in converting this code to its
vector version. This is really an aside to the central issue of constructing a good
algorithm-architecture match, but an important aside nonetheless.

A critical factor in determining whether the scalar algorithm has been correctly
mapped to the vector architecture is the accuracy and convergence properties of the
answers. Indeed, we obsetved that the results of those bundles transmitted, backscat-
terul, and escaped for the vector and scalar algorithm converged to different values. The
results from the vector algorithm were C1OSCto those of the scalar but were definitely di f-

ferent -- especially irt the values which are small. This was disturbing to us, and for some
time we locked for an error in the vector algorithm. Unable to find an error, we eventu-
ally turned our attention to the random number generator.

In the vector algorithm, we duplknu%, with fully vectm-ized code, the function of
the random number generator supplied in the scalar code (referred 10 as the Gatmeb rnn-
dom numbel generator). Our routine produced precisely the same sequence of random
numbers as did the scalar random number generator. However, the vec[or algori[hm
accesses the random numbers in different order, as vector operations require a sequence
of random numbers for a single purpose (e.g., determination of flight distance), whereas
in the scalar algorithm, two successive random numbers are used for different purposes
(e.g., determination of flight distance, then Russian Rouleue).

To test the random number generator, we focused our auention solely on the scalar
code with the Gumteb random number generator. We generated answers using the ongi -
nal sequence of random numbers for a variety of number of rnals until we had achieved
convergence. We next generated answers using every other random number in [he
sequence, and then every third. In Table A. 1, the converged quantities of the ratio of bl]n-
dles backscatterd, escaped and transmittal is shown for these three cases along with the
“true” answers(obtained from averaging the answers from the “corrected” vector and
scalar codes for one million emissions). -

Table A. 1.
Converged Values for Problem Solutions

Case Backscattered Escaped Transmitted

Every 0.0630 0.8067 0,2748

‘ Every Other 0.0161 0.8368 0.2357
Every Third 0.0i12 0,8489 o,2~62
“True” 0.0118 0.8592 0.2173

The original zandom number generator in the scalar code is the following algorithm:

X, = 3X,_1 mod 222 ;.-O = 221+5.
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This generator has the property of a full cycle: 2* -1 numbers

discussion), but is deficient in the sense of having a high serial.
first few random numbers generated (seen as binary integers):

x(-j: l~lol
xl: 1~1111
X2: l~lollol
x3: l~lmlll

(see Knuth[A. 1] for more
comelation. Consider the

Thus the first ten or so of the scaled random numbers are all approximately equal to 0.5.
A similar “run” occurs when the scaled values get close to 1.0 and 0.0. In general, such
behavior makes for a poor random number generator, and can lead to problems such M
the one deseribcd above. (3 is simply not a good multiplier it does not sufficiently shift
and add the seed value.) A number of good random number generators are available
[A, l],[A.2], and any of the linear congruenria.l type can be fully vectonzed.

We bring up this issue for two reasons. First, one must choose a rzidom nun~ber
generator with some care. The nature of Monte Carlo rcchniqum is such that their
“correctness” is very difficult to establish. (we speak in practical terms, since no com-
puter program is provably comect.) For any given simulation, a large number of resuhs
will appear to be correcg and differences between the results of multiple rnals will riatur-
ally be seen. hors due to faulty generation of random numbers may easily masquerade
as legitimate stm tical difference. Second, the problem is compounded when one enters
the veetor and parallel arenas. In these situations, subtle errors may not show up until the
problem is scaled up to a size which makes it impossible to “check” by any other
method; or until some asynchronous (and nonrepeatable) sequence of events occurs.
Given these difficulties in the veaor and parallel regime, a fauhy random number gen-
erator may kc practically impossible to detect.
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